18.2

Crypto ANN

PYTHON PLUGIN Crypto Machine Learning

Description

Strategy 18.2: ANN proxy using EMA crossovers + RSI + vol regime for crypto

Strategy Logic

Strategy 18.2: ANN-based BTC Price Prediction (proxy implementation). The original strategy uses a neural network trained on normalised returns, EMA (30m, 1h, 3h, 6h), EMSD (same windows), and RSI (3h, 6h, 12h) to predict K quantiles of future returns. Since actual NN training requires separate infrastructure, this implementation uses a composite signal from EMA crossovers, RSI regimes, and volatility as a proxy for the ANN output. Features computed (daily bar equivalents): - EMA crossovers at periods 2, 5, 12, 24 (proxy for 30m/1h/3h/6h) - Exponential moving std-dev at same periods - RSI at periods 12, 24, 48 (proxy for 3h/6h/12h)

Parameters

Parameter Default Value Type
ema_fast 5 int
ema_slow 24 int
ema_mid 12 int
rsi_period_short 12 int
rsi_period_long 48 int
rsi_overbought 70 int
rsi_oversold 30 int
vol_lookback 20 int
signal_threshold 0.3 float
quantile_k 5 int

Risk Configuration

Risk Parameter Value
Max Position Pct 10.0%
Stop Loss Pct 8.0%
Take Profit Pct 15.0%
Max Drawdown Pct 20.0%